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Abstract
Boreal and subarctic peatlands may become increasingly used for wastewater tertiary treatment. Colleagues added simulated
secondarily-treated wastewater to a subarctic ladder fen over two growing seasons. We examined how carbon storage and
nutrient relations changed for key Sphagnum species. We measured the productivity, decomposition, nutrient content, C:N
and N:P ratios of Sphagnum species on ridges and pool edges, and the nutrient relations of a third Sphagnum species in pools,
compared to a control fen. Closer to the point source, S. fuscum on ridges had a 2-fold increase in productivity, and Sphagnum
rubellum along pond edges had a 4 to 12-fold increase in productivity, but areas beyond 50 m downgradient were not affected.
The decomposition of S. fuscum did not change, and S. rubellum showed only a slight increase close to the point source.
Consequently, net carbon storage increased in Sphagnum within <50 m of the point source. Nutrient effects were apparent in
the pools and pool margins, whereas ridges were hardly affected. N:P was the most sensitive nutrient parameter, increasing within
50 m. In the short-term, subarctic peatlands exposed to simulated secondarily-treated wastewater increased their carbon storage.
Ridges in string fens were most resilient to nutrient amendments.

Keywords Subarctic peatland . String fen . Aapa mire . Sphagnum . Carbon storage . Nutrient enrichment . Wastewater tertiary
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Introduction

Peatlands cover 3% of the Earth’s land surface, but they store
15 to 30 % of global soil carbon, especially in boreal and
subarctic landscapes (Limpens et al. 2008). Besides carbon
sequestration, northern peatlands also provide regulating eco-
system services such as erosion protection, water quantity
regulation and water filtration (Kimmel and Mander 2010).
Humans commonly harness the filtering function of marshes
for the tertiary treatment of domestic wastewaters (Kadlec and
Wallace 2009), but we less commonly use northern peatlands,
with a few exceptions (Kadlec 2009a; Ronkanen and Klove
2009).

Boreal and subarctic peatlands are dominated by
ombrotrophic bogs and fens, especially string fens
(Glooschenko et al. 1993). Bogs only receive water from pre-
cipitation and serve as water storage complexes, whereas fens
act as conveyors of water across peatland landscapes during
periods of high hydrological connectivity (Quinton et al.
2003). String fens, including ribbed fens, aapa mires and the
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narrower string fens called ladder fens, all have a have a re-
peating pattern of pool-ridge-pool morphology (Warner and
Rubec 1997). Slow hydrological flow runs perpendicular to
the raised peat ridges; it occurs during periods of high water
by pool-to-pool connectivity through preferential flow paths
close to the surface of the ridges (Price and Maloney 1994;
Quinton et al. 2003; McCarter and Price 2017a). This gentle
hydrological flow makes string fens potential candidates for
the tertiary treatment of wastewater.

String fens are also acidic, nutrient-deprived ecosystems
dominated by Sphagnum mosses on the ridges and in the
pools (Sjörs 1963; Riley 2011). Their rates of productivity
and decomposition depend on the local climate, the degree
of waterlogging within the peatland, nutrient availability and
on the dominant Sphagnum species present (Clymo and
Hayward 1982; Turetsky et al. 2008). Sphagnum species, es-
pecially hummock-formers, are recalcitrant to decay (Johnson
and Damman 1993; Turetsky et al. 2008; Bengtsson et al.
2016), and this makes them keystone species on the ridges,
controlling hydrological relations of these fens. Sphagnum
species also have a high cation-exchange capacity (Clymo
1963), allowing them to efficiently scavenge for nutrients in
nutrient-poor environments. How would an increase in nutri-
ent supply from secondarily-treated wastewater affect
Sphagnum productivity and decomposition? How would it
consequently affect the hydrological flow across the ridges
of string fens?

Early studies reported decreased growth rates and even
mortality of Sphagnum when it was subject to enriched atmo-
spheric N deposition (Ferguson et al. 1984; Press et al. 1986;
Woodin and Lee 1987; Verhoeven and Schmitz 1991). Aerts
et al. (1992) showed that adding N to bogs that receive low
atmospheric N deposition increased the growth of Sphagnum
fourfold, while the same N addition to bogs already receiving
high atmospheric N deposition did not affect their productiv-
ity, and their growth became P-limited. These results point to
the need to examine multiple nutrients, especially N:P ratios,
when considering the effects of nutrient enrichment of
peatlands (Güsewell and Koerselman 2002). In other
European experiments, high rates of simulated atmospheric
N deposition decreased both Sphagnum production
(Berendse et al. 2001; van Wijk et al. 2003) and decomposi-
tion (Bragazza et al. 2006). Bubier et al. (2007) conducted a
five-year nutrient addition experiment in an ombrotrophic bog
in southeastern Canada using treatments representative of el-
evated atmospheric N deposition (1.6 to 6.4 g m-2 yr-1) and
other treatments with added P (5 g m-2 yr-1) and K (6.3 g m-2

yr-1). They found that plant growth and net ecosystem CO2

exchange (NEE) increased over the first two years, indicating
an increase in carbon storage, but by the third year and
onward, NEE levels decreased as the plant community
shifted away from Sphagnum toward other mosses and
vascular plants, and after four years, the treatments with

greater NPK loading had no more Sphagnum cover, in part
because of competition for light with taller vascular plants.
Larmola et al. (2013) concluded that the vegetation shifts,
particularly the loss of Sphagnum, is why peatlands with
longer-term nutrient enrichment become weaker carbon sinks.

But are these results applicable to string fens receiving
nutrient enrichment from secondarily-treated wastewater?
Most previous studies focus only on atmospheric N enrich-
ment with relatively low input rates; they consider
ombrotrophic bogs where the water is stagnant; and the stud-
ied peatlands have warmer climates with long-term anthropo-
genic influence as compared to most boreal and subarctic
peatlands. Few studies report on the effects of inputs of
secondarily-treated wastewater slowly flowing through
peatlands. Kadlec (2009a) studied a northern temperate
peatland in Michigan that received point source additions of
secondarily-treated wastewater seasonally (May-October)
over 40 years. The average nutrient loading rates were 4.50
g N m-2 yr-1 and 1.87 g P m-2 yr-1 within a 100 ha area,
although areas closer to the discharge received higher loading.
The peatland effectively retained nutrients, but within the first
few years, Typha had displaced peatland plant assemblages
(Kadlec and Bevis 2009), and peat shifted from Sphagnum
and sedge peat to Typha floating mats (Kadlec 2009b).
Ronkanen and Klove (2009) studied four tertiary treatment
peatlands in subarctic Finland receiving secondarily-treated
wastewater for 10 to 16 years with much higher loading rates
of 17 to 730 g N m-2 yr-1 and 0.53 to 7.0 g P m-2 yr-1 and also
found high retention of phosphorus, but do not report the
effects on vegetation, peat properties or carbon sequestration.
Given the increase in resource development pressures and the
population growth of isolated communities in subarctic re-
gions (e.g., (Far North Science Advisory Panel 2010) and
the prevalence of string fens in this biome (Glooschenko et
al. 1993), string fens may be increasingly considered for the
tertiary treatment of secondarily-treated wastewater.

In a collaborative study, colleagues and ourselves studied
the effects of simulated secondarily-treated domestic waste-
water on a ladder fen. Our colleagues examined the hydrology
(McCarter and Price 2017a), its solute transport dynamics
(McCarter and Price 2017b) and its nutrient and mercury
transport (McCarter et al. 2017). They showed that the ladder
fen immobilized nitrate by the first ridge, ammonium by the
fourth pool and phosphate by the second pool, while sulfate
extended further, to the seventh pond 117 m downgradient
(McCarter et al. 2017). Total mercury was also elevated
three-fold in the first ridge with high methylation, and they
attributed the high total mercury to increased decomposition
(McCarter et al. 2017). In this study, we aimed to document
the response of this point source nutrient loading on the pro-
ductivity and decomposition of key Sphagnum species in this
ladder fen, as well as the nutrient content within Sphagnum.
We hypothesized that the addition of simulated secondarily-
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treated domestic wastewater, in parallel with the nutrient
transport results, will (i) increase the rate of productivity of
Sphagnum species close to the discharge point; (ii) increase
the rate of decomposition of Sphagnum; (iii) increase nutrient
content and decrease C:N ratios in Sphagnum; (iv) shift the
N:P ratios within the Sphagnum; and (v) these changes would
be most evident in Sphagnum species growing in
microtopographic positions near or below the water table rath-
er than in ridges, which are elevated above the water table.

Methods

We conducted this study near the De Beers Canada Victor
Mine, within the Attawapiskat River watershed of the
Hudson Bay Lowland (HBL) in north-central Canada
(52.82° N, 83.91° W; 80 m elevation; Fig. 1). The HBL is a
vast peatland plain underlain by limestone bedrock and
glaciomarine sediments (Martini 2006). It is the world’s third
largest wetland, spanning 373,700 km2 (Abraham and Keddy
2005), with average peat depths of 1.8 m in fens to 2.2 m in
bogs (Riley 2011), making it a globally significant carbon
sink. Hudson Bay and James Bay heavily influence the region

and create a cool, humid, high-boreal climate, characterized
by short cool summers and long cold winters (Abraham and
Keddy 2005; Riley 2011). The mean annual temperature is -
1.3 °C, with a mean of -22.3 °C in January, and 17.2 °C in July
(Lansdowne House: 52.23 N, 87.88 W, 280 kmWSW; http://
climate.weather.gc.ca/climate_normals). The mean annual
precipitation is 700 mm, with 291 mm falling in the growing
season from June through August. The Victor Mine recorded
364 mm of precipitation during this same period in 2015, so
more than normal, but only 157 mm in 2016 (De Beers
Canada, unpublished data).

We studied two ladder fens: an experimental fen (EXP;
52.8547° N, 83.9431° W) and a reference fen (REF;
52.7833 °N, 83.8892° W), which are 8.5 km apart and drain
into separate tributaries of the Attawapiskat River. The exper-
imental fen had a total area of 9800 m2 (2240 m2 pools, 7560
m2 ridges), a 250 m length with an elevation drop of 0.67 m,
an average peat depth of 2.05 m and distinct pool-ridge mor-
phology for about half its length (McCarter and Price 2017a).
The reference fen was smaller, with an area of ~4000 m2, 150
m in length with similar average peat depth and elevation drop
to the experimental fen ridge (McCarter 2016). Their hydrol-
ogy has been described in detail (McCarter and Price 2017a),
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along with the solute transport dynamics (McCarter and Price
2017b) and the nutrient and mercury transport (McCarter et al.
2017). Both had pH of 4 to 6 (McCarter et al. 2017) and poor
to intermediate fen vegetation with a ground cover dominated
by Sphagnum species.

McCarter (2016) added simulated wastewater continually
from a point source to the experimental fen for 51 consecutive
days in the summer 2014 (July 11 - August 31) and 41 con-
secutive days in summer 2015 (July 4 - August 14) at an
approximate rate of 38 m3 day-1, but not during 2016. We
used a Plant Products® custom fertilizer, derived from potas-
sium nitrate, potassium phosphate, potassium chloride, potas-
sium sulphate, and ammonium sulphate and diluted it so the
point source contained sulfate (27.2 mg L-1), nitrate (27.2 mg
L-1), ammonium (9.1 mg L-1), phosphate (7.4 mg L-1), potas-
sium ion (24.5 mg L-1) and a salt tracer with Na+ (25.3 mg L-1)
and Cl- (47.2 mg L-1). The rate and composition was designed
to mimic domestic, secondarily-treated wastewater produced
by the Victor Mine camp. The mine has a year-round popula-
tion of roughly 200 persons and is required to secondarily-
treat their wastewater. An electric trolling motor ensured the
nutrient additions were well mixed within the first pool.

We determined differences in temperature regimes among
microtopographical positions in 2016 in both fens, by placing
HOBO® Pendant temperature loggers at a depth of 10 cm
within the first pool and ridge and recording temperature ev-
ery four hours throughout the 12-week growing season.

In May 2015, we established 72 sampling points in the
experimental fen and 18 in the reference fen, using a stratified
sampling design. We first selected sample zones, generally at
each ridge and pool sequence in the experimental fen and at
the start and end of the reference fen. Within each zone, we
identified monospecific colonies of Sphagnum fuscum on
ridge hummocks, Sphagnum rubellum along the edge of the
pools and in low-lying preferential flow paths between pools,
and Sphagnummajuswithin pools. Ridges were 29.6 ± 9.9 cm
(mean ± SD, n = 24) above the water table in the experimental
fen in June and July 2014, while pool edges and low-lying
preferential flow paths were 7.9 ± 9.3 (n = 21) above the water
table (C. McCarter, unpublished data). We randomly selected
three colonies per species per zone as sampling points.

We measured the productivity of Sphagnum fuscum and S.
rubellum using the crank wire method (Clymo and Reddaway
1974), with five replicate wires per sampling point, but we
could not measure the productivity of the semi-aquatic S.
majus. We measured growth from July 23 to September 8
(6.5 weeks) in 2015 and from June 6 to September 2 (12
weeks) in 2016, but we separated the 2016 season into two
~6-week periods, from June 6 to July 27 and from July 28 to
September 2, the second providing a comparable time fame to
the 2015 productivity measurements. We determined the dry
mass per length without capitula and measured mean density
of S. fuscum and S. rubellum by sampling four replicate

measurements from each sampling zone to convert length
measurements into productivity per unit area.

We assessed the decomposition of all species the field by
means of mass loss over time using the mesh decomposition
bag technique (Johnson and Damman 1991). We harvested
Sphagnum strands from each sample point in the experimental
fen and reference fen in July 2015. We removed the top 1 cm
of each strand including the capitulum and used the next 5 cm
long strand segment. We oven-dried ten 5 cm strands at 30 °C
for 48 hours, weighed them, placed them in 0.2 mm-mesh
nylon bags and heat-sealed them closed. We returned the de-
composition bags to the exact same sampling points in the
field from which the Sphagnum strand samples originated
and buried them to a depth of 10 cm, with two replicate bags
per sampling point. We also dried a subsample of each group
of Sphagnum strands at 70 °C for 48 hours to calculate a
conversion factor between 30 °C to 70 °C drying tempera-
tures. We retrieved the decomposition bags one year later in
July 2016 (82% recovery), rinsed the bags with deionized
water, oven-dried them at 70 °C for 48 hours, separated the
remaining Sphagnum strands and weighed them. We calculat-
ed decomposition mass loss by correcting the initial mass at
30 °C using the calculated conversion factor. For S. fuscum
and S. rubellum, we divided the mass lost by the Sphagnum
density value from each sampling location to determine the
mass lost per unit area. We did not measure the density of S.
majus, so we could not convert its decomposition to unit area.

In August of 2016, we collected samples of S. fuscum, S.
rubellum, and S. majus from each sampling location to deter-
mine nutrient content and stoichiometry. We again removed
the capitulum and retained the next 5 cm long segment of each
Sphagnum strand. We air-dried samples for 30 days at room
temperature, ground them with a ball mill and had them ana-
lyzed at the Ontario Forestry Research Institute (OFRI) for
total C and N using an elemental combustion analyzer
(Vario MAX Cube CN); total Kjeldahl N using a Brann and
Luebbe Technicon Traacs 800 run off a selenium dioxide di-
gestion following industrial method 786-86T; total S using a
carbon/sulfur combustion analyzer (ELTRA® CS-800); and
total P, K, Ca and Mg using inductively coupled plasma (ICP;
Genesis FEE ICP OES) run off the same selenium dioxide
digestion as for total Kjeldahl N. Total N from combustion
and the Kjeldahl technique were strongly correlated (r =
0.998), so we only report the combustion N results.

We first conducted a principal component analysis of the
macronutrient data (N, S, P, K, Ca and Mg) to reduce data
complexity and used the first principal component (PC1) in
subsequent analyses. We first tested whether overall differ-
ences in productivity, decomposition, PC1, and C:N and N:P
ratios existed among species using univariate analyses of var-
iance, with Tukey post-hoc comparisons for the nutrient data.
We also compared the growth, decomposition, and nutrient
data within species using Pearson correlations. We then tested
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for differences between the two fens in these variables, using
distance downgradient in the fens as a covariable and the fen
by distance interaction. We measured the distance down-
stream in the experimental fen as the distance from a central
line in the first pond, since this pond was well mixed
(McCarter 2016). We tested for linear regressions of these
dependent variables separately within each fen against dis-
tance downgradient. In the experimental fen, we also used
segmented regression to explore for breakpoints in the shape
of the individual regressions downgradient from the nutrient
source. We chose segmented regression models only if they
were superior to the linear regression models, as determined
from their type I error rate. We analyzed most data using
general linear models with Statistica® version 10, but we ex-
amined for segmented or step relationships using SegReg®
software (https://www.waterlog.info/segreg.htm). We verified
homogeneity of variance and normality using residual plots.
We applied a 5% type I error rate for statistical significance but
noted borderline effects up to a 10% error rate.

Results

Temperatures at a depth of 10 cm within both fens were con-
sistently warmer in pools than in ridges by 2.5 to 3.5 °C on
average over the 2016 growing season, with median temper-
atures in August, the hottest month, of 16.4 °C in pools and
14.2 °C in ridges.

When we consider all sampling points, Sphagnum fuscum
did not differ from S. rubellum in overall productivity at any
time (F1, 55 < 1.2, P > 0.29). When we look at each species
individually, the 6-week rates of productivity of S. fuscum
were only weakly correlated between 2015 and 2016 (r =
0.46) and the overall productivity did not differ between the
fens over any time period (F1, 21 < 0.4, P > 0.56; Table 1,
Fig. 2, Online Figs. S1-S4). When we examined for effects
downgradient, the productivity of S. fuscum did not change in
the reference fen in either year (F1, 4 < 1.4, P > 0.30), nor in
the experimental fen in 2015 (F1, 17 = 2.4, P = 0.14), but it
showed segmented relationships in 2016 (6-weeks: F3, 15 =
5.0, P = 0.013; 12-weeks: F3, 15 = 3.3, P = 0.05), with slightly
higher productivity closer to the discharge point, declining

until a common breakpoint at 48 m, after which there was
no change.

For Sphagnum rubellum, its 6-week rates of productivity
were strongly correlated between 2015 and 2016 (r = 0.93),
and its overall productivity was greater within the experimental
fen than the reference fen at all time periods (2015 6-weeks: F1,
21 = 8.1, P = 0.009; 2016 6-weeks: F1, 22 = 8.1, P = 0.016; 2016
12-weeks: F1, 22 = 6.9, P = 0.015; Table 1, Fig. 2 and Online
Figs. S1-S4). Its productivity in the reference fen increased
slightly with distance downgradient in 2015 (F1, 4 = 8.8, P =
0.041) but did not change in 2016 (F1, 4 = 0.1, P > 0.76),
whereas in the experimental fen, its productivity showed strong
segmented relationships (F3, 16 > 27.5, P < 0.0001), with much
greater rates near the nutrient point source, until breakpoints of
33 to 37 m downgradient, after which there was no change,
with rates similar to the reference fen.

Overall, the one-year decomposition per unit area did not
differ between S. fuscum and S. rubellum (F1, 53 = 2.4, P =
0.12), and did not significantly correlate with any measure of
productivity (r < 0.36). The rate of decomposition of S. fuscum
did not change between the fens (F1, 21 = 0.9,P = 0.35), nor did
it change with distance downgradient in either fen (REF: F1, 4
= 0.4, P = 0.57; EXP: F1, 16 = 1.8, P = 0.20; Table 1, Fig. 2b
and Online Fig. S5). In contrast, the decomposition rate of S.
rubellum was slightly faster in the experimental fen (F1, 20 =
4.8, P = 0.040). It did not change with distance downgradient
in the reference fen (F1, 4 = 4.0, P = 0.12) and in the experi-
mental fen only showed borderline faster decomposition rates
near the discharge point, dropping at 31m in a step relationship
(F2, 15 = 2.7, P = 0.099). When we examined for decomposi-
tion effects on a percent mass lost basis, Sphagnum majus had
greater mass lost over one year than either of the two other
species (Tukey P = 0.0001), which were similar to each other
(Tukey P = 0.39), and there was no significant effects with
distance downgradient in either fen (Online Fig. S6).

At the end of the 2016 growing season, the first principal
component (PC1) of nutrient content within the three
Sphagnum species explained 74% of the total variation
(Online Fig. S7). It was strongly correlated with N, S, P, K,
andMg content (r > 0.90) so reflects our simulated wastewater
amendment (Online Table S1). Overall, the PC1 of S. majus
was significantly higher than the other two species (Tukey P >
0.0001), indicating that it had higher overall nutrient content,

Table 1. Overall rates of
productivity during the 2016
growing season and
decomposition over one year
(2015-2016) of Sphagnum
fuscum and S. rubellum between
the reference (REF) and experi-
mental (EXP) fen

Species Site Productivity 2016 (g dm-2 12-weeks-1) Decomposition (g dm-2 yr-1)

n mean SE n mean SE

Sphagnum fuscum REF 6 2.69 0.49 6 1.36 0.26

EXP 22 2.13 0.44 22 1.14 0.13

Sphagnum rubellum REF 6 1.32 0.35 6 1.01 0.18

EXP 23 4.44 1.03 21 1.58 0.14

Wetlands (2019) 39:29–38 33

https://www.waterlog.info/segreg.htm


while S. fuscum and S. rubellum did not differ from each other
(Tukey P = 0.11). PC1 of S. fuscum did not change between
fens (F1, 18 = 0.01,P = 0.92), nor did it change in either fen as a
function of distance downgradient (REF: F1, 5 = 1.1, P = 0.34;
EXP: F1, 13 = 0.5, P = 0.47; Fig. 3a). For S. rubellum, PC1 was
borderline higher in the experimental fen than the reference
fen at the end of 2016 (F1, 15 = 3.7, P = 0.075), reflecting

higher nutrient content. It did not change downgradient in
the reference fen (F1, 4 = 0.0, P = 96), but there was a border-
line step decline of PC1 with distance downgradient in the
experimental fen (F2, 10 = 3.6, P = 0.065), with a breakpoint
at 51 m. For S. majus, PC1 was much higher in the experi-
mental fen than the reference fen (F1, 17 = 16.8, P = 0.0007),
reflecting higher nutrient content in the pools of the
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experimental fen. It declined strongly and linearly in the ex-
perimental fen with distance downgradient (F1, 12 = 15.7, P =
0.002), but not in the reference fen (F1, 4 = 0.8, P = 0.41).

The C:N ratio of the three Sphagnum species differed at the
end of the 2016 season (Tukey P = 0.0002 from each other),
with S. fuscum having the highest C:N on average and S.
majus the lowest (Fig. 3b). S. fuscum showed no difference
in C:N between fens (F1, 18 = 0.3, P = 0.61) and neither was
there any relationship against distance downgradient in either
fen (REF: F1, 5 = 2.1, P = 0.21; EXP: F1, 13 = 0.4, P = 0.54;
104.7 ± 4.0, mean ± SE). C:N of S. rubellum also did not differ
overall between fens (F1, 15 = 0.9, P = 0.35; 71.3 ± 5.1; mean
± SE), again with no effect from distance downgradient in the
reference fen (F1, 4 = 0.4, P = 0.55), but there was a borderline
step increase in the experimental fen (F2, 10 = 3.5, P = 0.070),
with lower C:N around 56 until a step rise at a breakpoint at 57
m to C:N of 99. For S. majus, C:N was much lower in the
experimental fen (F1, 17 = 21.9, P = 0.0002; REF: 59 ± 6,
EXP: 29, mean ± SE) and increased linearly with distance
downgradient in the experimental fen (F1, 12 = 24.6, P =
0.0003), from around 25 in the first pool to 60 near the end
of the fen.

Overall, the Sphagnum species did not have different N:P
ratios from each other at the end of the 2016 season (F2, 64 =
0.6, P = 0.55; Fig. 3c). The N:P of S. fuscum did not differ
between fens (F1, 18 = 0.1, P = 0.72) and did not change with
distance downgradient in the reference fen (F1, 5 = 0.1, P =
0.76), but it showed a significant segmented relationship in the
experimental fen (F1, 13 = 5.8, P = 0.0078), with N:P of near
10 close to the discharge point, rising to near 20 after a
breakpoint at 44 m, similar to the N:P across the reference
fen. For S. rubellum, N:P was lower in the experimental fen
(F1, 15 = 7.2, P = 0.017), and showed no change with distance
in the reference fen (F1, 13 = 0.4, P = 0.2), but showed a step
relationship with distance downgradient in the experimental
fen (F2, 10 = 12.0, P = 0.002), again with lower N:P ratios
around 10 closer to the discharge point, rising to just under 20
after the breakpoint at 57 m. Finally for S. majus, N:P was
lower in the experimental fen (F1, 17 = 5.6, P = 0.031). There
was no change with distance downgradient in the reference
fen (F1, 4 = 0.1, P = 0.76), but the experimental fen had a
strong step relationship with distance downgradient (F2, 11 =
24.6, P = 0.0001), with N:P near 5 until a breakpoint at 52 m,
after which N:P remained around 20. This change in N:P ratio
is also visible in a ternary diagram of N, P and K, and also
shows that changes in K ratios do not occur (Online Fig. S8).

Discussion

A point source addition of simulated secondarily-treated
wastewater, as we expected, increased Sphagnum productivity
within the experimental ladder fen and also increased the

nutrient content in Sphagnum (PC1), decreased the C:N ratios
and decreased the N:P ratios, but we only found these effects
within 50 m from the discharge point, despite two years of
continuous additions of simulated wastewater during the 2014
and 2015 growing seasons. These effects extended from the
first pool through to the third ridge of the experimental fen
(three pools and two ridges), and beyond this point,
productivity and nutrient data were comparable to the
reference fen. McCarter et al. (2017) found roughly similar
distances for nutrient transport, with NH4

+ extending a bit
further to the fourth pool, but PO4

3- extending only to the
second pool.

We also found, as we had hypothesized, that productivity
and nutr ient uptake were strongly l inked to the
microtopographical position of the Sphagnum species. The
first few pools of the experimental fen had high hydrological
connectivity, especially in 2015 when precipitation was above
normal (McCarter and Price 2017a). S. majus in the pools was
most affected, at least in terms of nutrient content, while S.
rubellum along the edges of the pools was also strongly af-
fected. Although we did not measure the productivity of S.
majus, we expect that it would have followed its nutrient
trends, showing a large effect. Sphagnum species from differ-
ent microtopographical positions differ in their innate produc-
tivity. Species in the Cuspidata section of Sphagnum, such S.
majus typical of pools, have higher innate growth, while those
in the Acutifolia section, such as S. fuscum and S. rubellum,
typical of hummocks and carpets, have lower innate growth
rates (Bengtsson et al. 2016). Differences also exist in envi-
ronmental variables between hummocks and low-lying zones
along pool edges (Damman 1978; Clymo and Hayward
1982). The strong responses of S. rubellum for growth and
nutrient relations and S. majus for nutrient relations must re-
flect their contact with the nutrient-enriched waters.

In contrast, Sphagnum fuscum, the species dominant in the
ridges, was not affected in 2015 and was least affected in
terms of productivity and nutrient content in 2016. While the
innate growth of S. fuscum is slightly lower than S. rubellum
(Bengtsson et al. 2016), it may have had a delayed and smaller
magnitude productivity response simply because of its more
than 30 cm elevation above the nutrient-enriched water table.
Hummock species such as S. fuscum rely on passive capillary
rise of water during periods of water stress (Clymo and
Hayward 1982; Thompson and Waddington 2008). The
above-normal precipitation in 2015 may have limited the cap-
illary rise of nutrients and their uptake by S. fuscum, while the
below normal precipitation in 2016 may have allowed for
greater capillary rise and nutrient uptake. The ridges were also
colder than pools by 2.5-3.5 oC at 10 cm depth, which may
further contributed to reduced S. fuscum production in the
ridges in contrast to the pools, although a similar temperature
difference was insufficient to affect productivity in Sphagnum
balticum (Granath et al. 2009). The temperature difference
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between ridges and pools did not appear to affect
decomposition.

Step shifts in N:P in all three Sphagnum species appears to
be the most sensitive indicator of change in these nutrient-
poor subarctic peatlands, more than increases in productivity
and nutrient content (PC1) or decreases in C:N ratios.
Koerselman and Meuleman (1996) considered plants with
N:P ratios >16 to be P-limited, and those with N:P < 14 to
be N-limited. All three of our Sphagnum species had back-
ground N:P near 20 in the reference fen and upgradient from
the discharge point and downgradient beyond 50 m in the
experimental fen, and consequently showed strong P-
limitation under natural conditions. N:P ratios near 20 are
commonly observed under natural conditions at the surface
of boreal and temperate bogs and fens across Canada (Wang
et al. 2015). But in the first three ponds and two ridges
downgradient from the discharge point, N:P was near or be-
low 10 for S. fuscum and S. rubellum, even below 5 for S.
majus, indicating shifts to strong N-limitation, especially in
the pools. This suggests that P transport extended further
downgradient than was observed by McCarter et al. (2017),
who only found elevated levels of PO4

3- above 3 mg L-1 until
the second pool. NPK nutrient enrichment experiments in
southern Canada cause shifts in nutrient ratios toward K or
K+N limitations (Wang et al. 2016), but our results show a
shift toward N-limitation. Although this shift to N-limitation
suggests that we could add even more N that would have been
retained by Sphagnum, especially in the pools, other factors
such as temperature, light or the species’ maximum intrinsic
growth rates may still have limited the ability of Sphagnum to
convert these nutrients into biomass (Güsewell and
Koerselman 2002).

We had also hypothesized that inputs of simulated
secondarily-treated wastewater would also increase the rate
of Sphagnum decomposition in the experimental fen closer
to the discharge point, but we found no effect for S. fuscum
and a limited, borderline effect for S. rubellum. Sphagnum
fuscum has slow inherent rates of decomposition, lower than
S. rubellum and much lower than S. majus (Bengtsson et al.
2016), so we expected to see differences in decomposition
rates between S. fuscum and S. rubellum over the one year
incubation period. Sphagnum decomposition also increases
with decreasing C:N ratios (Limpens and Berendse 2003;
Bragazza et al. 2006), and we observed lower C:N for S.
rubellum closer to the discharge point, so we expected to have
higher decomposition in this zone. Bubier et al. (2007) also
did not find significant differences in the rates of decomposi-
tion of S. capillifolium, another Acutifolia section species sim-
ilar to S. rubellum, after being fertilized for five years with a
series of NPK mixtures; increases in rates of decomposition
were due to shifts away from Sphagnum-dominated commu-
nities toward those dominated by vascular plants (Larmola et
al. 2013). Likewise, Manninen et al. (2016) did not observe

differences in Sphagnum decomposition among long-term fer-
tilization treatments in an incubation experiment. McCarter et
al. (2017) suggested that elevated total mercury concentra-
tions in the first ridge of the experimental fen were indicative
of increased decomposition, but our field results do not sup-
port this suggestion, although we did find greater decomposi-
tion of Sphagnum closer to the discharge point in a laboratory
incubation experiment (Lavallee 2017).

Sphagnum production was much greater than decomposi-
tion within 50 m downgradient from the discharge point in the
experimental fen after two seasons of simulated secondarily-
treated wastewater discharge, allowing for increases in carbon
storage, especially around the edges of the pools and to a
lesser extent in the ridges. This suggests that the structure of
the ridges and hence their hydrological control over this ladder
fen was not damaged and may even have been enhanced, at
least over a three-year period. How long could this effect be
sustained? In a temperate ombrotrophic peatlands Bubier et al.
(2007) found lower carbon storage by the third year of fertil-
ization as a result of shifts away from Sphagnum-dominated
communities toward vascular plant communities. It is not
known if and under what timeframe these subarctic ladder
fens would switch in dominance toward vascular plant com-
munities. At least through two years of nutrient amendment,
Sphagnum species dominate and these fens remain as strong
carbon sinks. If vascular plants eventually supplant
Sphagnum, their litter may be less recalcitrant to decomposi-
tion, which would shift the carbon storage dynamics of the
peatland. Longer term studies of subarctic fens receiving
secondarily-treated wastewater would be needed to address
this issue.
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